Logarithmic convexity of extended mean values
نویسندگان
چکیده
منابع مشابه
THE FUNCTION (bx − ax)/x: LOGARITHMIC CONVEXITY AND APPLICATIONS TO EXTENDED MEAN VALUES
In the present paper, we first prove the logarithmic convexity of the elementary function b x −a x x , where x 6= 0 and b > a > 0. Basing on this, we then provide a simple proof for Schur-convex properties of the extended mean values, and, finally, discover some convexity related to the extended mean values.
متن کاملNecessary and Sufficient Conditions for the Schur Harmonic Convexity or Concavity of the Extended Mean Values
In this paper, we prove that the extended values E(r, s;x, y) are Schur harmonic convex (or concave, respectively) with respect to (x, y) ∈ (0,∞) × (0,∞) if and only if (r, s) ∈ {(r, s) : s ≥ −1, s ≥ r, s+ r + 3 ≥ 0} ∪ {(r, s) : r ≥ −1, r ≥ s, s+r+3 ≥ 0} (or {(r, s) : s ≤ −1, r ≤ −1, s+r+3 ≤ 0}, respectively).
متن کاملLogarithmic Convexity of Gini Means
where x and y are positive variables and r and s are real variables. They are also called sum mean values. There has been a lot of literature such as [3, 4, 5, 6, 9, 10, 11, 12, 13, 19, 20, 21] and the related references therein about inequalities and properties of Gini means. The aim of this paper is to prove the monotonicity and logarithmic convexity of Gini means G(r, s;x, y) and related fun...
متن کاملOptimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference
متن کامل
A New Proof of Monotonicity for Extended Mean Values
In this article, a new proof of monotonicity for extended mean values is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2001
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-01-06275-x